Journalartikel

Subgroups of classical groups generated by transvections or Siegel transvections I: Embeddings in linear groups


AutorenlisteSteinbach, AI

Jahr der Veröffentlichung1997

Seiten281-322

ZeitschriftGeometriae Dedicata

Bandnummer68

Heftnummer3

ISSN0046-5755

DOI Linkhttps://doi.org/10.1023/A:1004996924764

VerlagSpringer


Abstract
We are concerned with finite-dimensional classical groups over arbitrary commutative fields. In an orthogonal group a Siegel transvection, that is, an element centralizing l(perpendicular to) for some totally singular 2-dimensional subspace l, plays the same role as a transvection in the linear, symplectic or unitary groups. The Main Theorem of this paper describes the possible embeddings of classical groups in classical groups such that (Siegel) transvections act as (Siegel) transvections.



Zitierstile

Harvard-ZitierstilSteinbach, A. (1997) Subgroups of classical groups generated by transvections or Siegel transvections I: Embeddings in linear groups, Geometriae Dedicata, 68(3), pp. 281-322. https://doi.org/10.1023/A:1004996924764

APA-ZitierstilSteinbach, A. (1997). Subgroups of classical groups generated by transvections or Siegel transvections I: Embeddings in linear groups. Geometriae Dedicata. 68(3), 281-322. https://doi.org/10.1023/A:1004996924764



Schlagwörter


classical groupembedding of projective spacesfundamental theorem of projective geometryK-ROOT SUBGROUPSlong root elementOVERGROUPSPolar spaceSiegel transvectiontransvection


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 05:57