Journalartikel
Autorenliste: Baumeister, B; Meixner, T; Pasini, A
Jahr der Veröffentlichung: 1997
Seiten: 163-180
Zeitschrift: Geometriae Dedicata
Bandnummer: 67
Heftnummer: 2
ISSN: 0046-5755
DOI Link: https://doi.org/10.1023/A:1004913528398
Verlag: Springer
Abstract:
Let Gamma be a finite geometry of rank n greater than or equal to 2 with a selected type of elements, called 'points'. Let m be the number of 'points' of Gamma. Under some mild hypotheses on Gamma we can consider an affine expansion of Gamma to AG(m, 2). We prove that the geometries obtained by applying this construction to matroids are simply connected. Then we exploit this result to study universal covers of certain geometries arising from hyperbolic quadrics and symplectic varieties over GF(2).
Zitierstile
Harvard-Zitierstil: Baumeister, B., Meixner, T. and Pasini, A. (1997) GF(2)-expansions, Geometriae Dedicata, 67(2), pp. 163-180. https://doi.org/10.1023/A:1004913528398
APA-Zitierstil: Baumeister, B., Meixner, T., & Pasini, A. (1997). GF(2)-expansions. Geometriae Dedicata. 67(2), 163-180. https://doi.org/10.1023/A:1004913528398
Schlagwörter
affine expansions; coxeter complexes; GF(2)-modules