Journalartikel

GF(2)-expansions


AutorenlisteBaumeister, B; Meixner, T; Pasini, A

Jahr der Veröffentlichung1997

Seiten163-180

ZeitschriftGeometriae Dedicata

Bandnummer67

Heftnummer2

ISSN0046-5755

DOI Linkhttps://doi.org/10.1023/A:1004913528398

VerlagSpringer


Abstract
Let Gamma be a finite geometry of rank n greater than or equal to 2 with a selected type of elements, called 'points'. Let m be the number of 'points' of Gamma. Under some mild hypotheses on Gamma we can consider an affine expansion of Gamma to AG(m, 2). We prove that the geometries obtained by applying this construction to matroids are simply connected. Then we exploit this result to study universal covers of certain geometries arising from hyperbolic quadrics and symplectic varieties over GF(2).



Zitierstile

Harvard-ZitierstilBaumeister, B., Meixner, T. and Pasini, A. (1997) GF(2)-expansions, Geometriae Dedicata, 67(2), pp. 163-180. https://doi.org/10.1023/A:1004913528398

APA-ZitierstilBaumeister, B., Meixner, T., & Pasini, A. (1997). GF(2)-expansions. Geometriae Dedicata. 67(2), 163-180. https://doi.org/10.1023/A:1004913528398



Schlagwörter


affine expansionscoxeter complexesGF(2)-modules


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 07:30