Journalartikel
Autorenliste: Rompf, D; Draayer, JP; Troltenier, D; Scheid, W
Jahr der Veröffentlichung: 1996
Seiten: 359-365
Zeitschrift: Zeitschrift für Physik A, Hadrons and Nuclei
Bandnummer: 354
Heftnummer: 4
ISSN: 0939-7922
DOI Link: https://doi.org/10.1007/s002180050058
Verlag: Springer
Abstract:
The relation between the shape variables (beta, gamma) of the collective model and the (lambda, mu) labels which define the irreducible representations of the SU(3) shell model is extended to a coupled rotor picture where one rotor represents protons (pi) and the other one neutrons (nu). The joint distribution, (beta, gamma), emerges as the overlap of the initial distributions, (beta(pi), gamma(pi)) and (beta(nu), gamma(nu)), where three Euler angles define the relative orientation of proton and neutron subsystems. It is shown analytically that the rotor construction for triaxial and axially symmetric shapes corresponds to a (lambda(pi), mu(pi) = 0) x (lambda(nu), mu(nu)) --> (lambda, mu)(rho=1) coupling in the SU(3) model.
Zitierstile
Harvard-Zitierstil: Rompf, D., Draayer, J., Troltenier, D. and Scheid, W. (1996) Algebraic realization of a coupled rotor picture, Zeitschrift für Physik A Hadrons and Nuclei, 354(4), pp. 359-365. https://doi.org/10.1007/s002180050058
APA-Zitierstil: Rompf, D., Draayer, J., Troltenier, D., & Scheid, W. (1996). Algebraic realization of a coupled rotor picture. Zeitschrift für Physik A Hadrons and Nuclei. 354(4), 359-365. https://doi.org/10.1007/s002180050058
Schlagwörter
DEFORMED-NUCLEI; NEUTRON DEFORMATIONS; PROTON; SHELL-MODEL DESCRIPTION