Journalartikel

TRIPLE-SYSTEMS IN PG(2, Q)


AutorenlisteJUNGNICKEL, D; VANSTONE, S

Jahr der Veröffentlichung1991

Seiten131-135

ZeitschriftDiscrete Mathematics

Bandnummer92

Heftnummer1-3

ISSN0012-365X

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1016/0012-365X(91)90274-6

VerlagElsevier


Abstract
Let G be a cyclic Singer group for the Desarguesian projective plane P = PG(2, q). Then there exists a cyclic Steiner triple system on the point set of P which is invariant under G and the blocks of which are triangles of P.



Zitierstile

Harvard-ZitierstilJUNGNICKEL, D. and VANSTONE, S. (1991) TRIPLE-SYSTEMS IN PG(2, Q), Discrete Mathematics, 92(1-3), pp. 131-135. https://doi.org/10.1016/0012-365X(91)90274-6

APA-ZitierstilJUNGNICKEL, D., & VANSTONE, S. (1991). TRIPLE-SYSTEMS IN PG(2, Q). Discrete Mathematics. 92(1-3), 131-135. https://doi.org/10.1016/0012-365X(91)90274-6



Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 12:16