Journalartikel

SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS


AutorenlisteARASU, KT; DAVIS, J; JUNGNICKEL, D; POTT, A

Jahr der Veröffentlichung1991

Seiten1-8

ZeitschriftCombinatorica

Bandnummer11

Heftnummer1

ISSN0209-9683

DOI Linkhttps://doi.org/10.1007/BF01375467

VerlagSpringer


Abstract

In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches: (i) character sum arguments similar to the work of Turyn [25] for ordinary difference sets, (ii) involution arguments and (iii) multipliers in conjunction with results on ordinary difference sets.

Among other results, we show that an abelian affine difference set of odd order s (s not a perfect square) in G can exist only if the Sylow 2-subgroup of G is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd order n.




Zitierstile

Harvard-ZitierstilARASU, K., DAVIS, J., JUNGNICKEL, D. and POTT, A. (1991) SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS, Combinatorica, 11(1), pp. 1-8. https://doi.org/10.1007/BF01375467

APA-ZitierstilARASU, K., DAVIS, J., JUNGNICKEL, D., & POTT, A. (1991). SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS. Combinatorica. 11(1), 1-8. https://doi.org/10.1007/BF01375467



Schlagwörter


EVEN ORDERMULTIPLIERWILBRINK THEOREM

Zuletzt aktualisiert 2025-02-04 um 07:02