Journal article

SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS


Authors listARASU, KT; DAVIS, J; JUNGNICKEL, D; POTT, A

Publication year1991

Pages1-8

JournalCombinatorica

Volume number11

Issue number1

ISSN0209-9683

DOI Linkhttps://doi.org/10.1007/BF01375467

PublisherSpringer


Abstract

In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches: (i) character sum arguments similar to the work of Turyn [25] for ordinary difference sets, (ii) involution arguments and (iii) multipliers in conjunction with results on ordinary difference sets.

Among other results, we show that an abelian affine difference set of odd order s (s not a perfect square) in G can exist only if the Sylow 2-subgroup of G is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd order n.




Citation Styles

Harvard Citation styleARASU, K., DAVIS, J., JUNGNICKEL, D. and POTT, A. (1991) SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS, Combinatorica, 11(1), pp. 1-8. https://doi.org/10.1007/BF01375467

APA Citation styleARASU, K., DAVIS, J., JUNGNICKEL, D., & POTT, A. (1991). SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS. Combinatorica. 11(1), 1-8. https://doi.org/10.1007/BF01375467



Keywords


EVEN ORDERMULTIPLIERWILBRINK THEOREM

Last updated on 2025-02-04 at 07:02