Journal article
Authors list: ARASU, KT; DAVIS, J; JUNGNICKEL, D; POTT, A
Publication year: 1991
Pages: 1-8
Journal: Combinatorica
Volume number: 11
Issue number: 1
ISSN: 0209-9683
DOI Link: https://doi.org/10.1007/BF01375467
Publisher: Springer
In this paper, we shall prove several non-existence results for divisible difference sets, using three approaches: (i) character sum arguments similar to the work of Turyn [25] for ordinary difference sets, (ii) involution arguments and (iii) multipliers in conjunction with results on ordinary difference sets. Among other results, we show that an abelian affine difference set of odd order s (s not a perfect square) in G can exist only if the Sylow 2-subgroup of G is cyclic. We also obtain a non-existence result for non-cyclic (n, n, n, 1) relative difference sets of odd order n.
Abstract:
Citation Styles
Harvard Citation style: ARASU, K., DAVIS, J., JUNGNICKEL, D. and POTT, A. (1991) SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS, Combinatorica, 11(1), pp. 1-8. https://doi.org/10.1007/BF01375467
APA Citation style: ARASU, K., DAVIS, J., JUNGNICKEL, D., & POTT, A. (1991). SOME NONEXISTENCE RESULTS ON DIVISIBLE DIFFERENCE SETS. Combinatorica. 11(1), 1-8. https://doi.org/10.1007/BF01375467
Keywords
EVEN ORDER; MULTIPLIER; WILBRINK THEOREM