Journalartikel
Autorenliste: Hammer, B; Strickert, M; Villmann, T
Jahr der Veröffentlichung: 2005
Seiten: 109-120
Zeitschrift: Neural Processing Letters
Bandnummer: 21
Heftnummer: 2
ISSN: 1370-4621
eISSN: 1573-773X
DOI Link: https://doi.org/10.1007/s11063-004-1547-1
Verlag: Springer
Abstract:
We derive a generalization bound for prototype-based classifiers with adaptive metric. The bound depends on the margin of the classifier and is independent of the dimensionality of the data. It holds for classifiers based on the Euclidean metric extended by adaptive relevance terms. In particular, the result holds for relevance learning vector quantization (RLVQ) [4] and generalized relevance learning vector quantization (GRLVQ) [19].
Zitierstile
Harvard-Zitierstil: Hammer, B., Strickert, M. and Villmann, T. (2005) On the generalization ability of GRLVQ networks, Neural Processing Letters, 21(2), pp. 109-120. https://doi.org/10.1007/s11063-004-1547-1
APA-Zitierstil: Hammer, B., Strickert, M., & Villmann, T. (2005). On the generalization ability of GRLVQ networks. Neural Processing Letters. 21(2), 109-120. https://doi.org/10.1007/s11063-004-1547-1