Journalartikel

On the generalization ability of GRLVQ networks


AutorenlisteHammer, B; Strickert, M; Villmann, T

Jahr der Veröffentlichung2005

Seiten109-120

ZeitschriftNeural Processing Letters

Bandnummer21

Heftnummer2

ISSN1370-4621

eISSN1573-773X

DOI Linkhttps://doi.org/10.1007/s11063-004-1547-1

VerlagSpringer


Abstract
We derive a generalization bound for prototype-based classifiers with adaptive metric. The bound depends on the margin of the classifier and is independent of the dimensionality of the data. It holds for classifiers based on the Euclidean metric extended by adaptive relevance terms. In particular, the result holds for relevance learning vector quantization (RLVQ) [4] and generalized relevance learning vector quantization (GRLVQ) [19].



Autoren/Herausgeber




Zitierstile

Harvard-ZitierstilHammer, B., Strickert, M. and Villmann, T. (2005) On the generalization ability of GRLVQ networks, Neural Processing Letters, 21(2), pp. 109-120. https://doi.org/10.1007/s11063-004-1547-1

APA-ZitierstilHammer, B., Strickert, M., & Villmann, T. (2005). On the generalization ability of GRLVQ networks. Neural Processing Letters. 21(2), 109-120. https://doi.org/10.1007/s11063-004-1547-1


Zuletzt aktualisiert 2025-06-06 um 11:42