Journal article

On the generalization ability of GRLVQ networks


Authors listHammer, B; Strickert, M; Villmann, T

Publication year2005

Pages109-120

JournalNeural Processing Letters

Volume number21

Issue number2

ISSN1370-4621

eISSN1573-773X

DOI Linkhttps://doi.org/10.1007/s11063-004-1547-1

PublisherSpringer


Abstract
We derive a generalization bound for prototype-based classifiers with adaptive metric. The bound depends on the margin of the classifier and is independent of the dimensionality of the data. It holds for classifiers based on the Euclidean metric extended by adaptive relevance terms. In particular, the result holds for relevance learning vector quantization (RLVQ) [4] and generalized relevance learning vector quantization (GRLVQ) [19].



Authors/Editors




Citation Styles

Harvard Citation styleHammer, B., Strickert, M. and Villmann, T. (2005) On the generalization ability of GRLVQ networks, Neural Processing Letters, 21(2), pp. 109-120. https://doi.org/10.1007/s11063-004-1547-1

APA Citation styleHammer, B., Strickert, M., & Villmann, T. (2005). On the generalization ability of GRLVQ networks. Neural Processing Letters. 21(2), 109-120. https://doi.org/10.1007/s11063-004-1547-1


Last updated on 2025-06-06 at 11:42